Sains Malaysiana 52(11)(2023): 3061-3073

http://doi.org/10.17576/jsm-2023-5211-04

 

Random Mutagenesis to Enhance the Toxicity of Bacillus thuringiensis Cry Proteins against Earias vittella (F.)

(Mutagenesis Rawak untuk Meningkatkan Ketoksikan Protein Cry Bacillus thuringiensis terhadap Earias vittella (F.))

 

HAFSA ZAHEER, HUMA KHURSHID, FAKHAR-UN-NISA YUNUS*, FARKHANDA MANZOOR, GHAZALA JABEEN & ZAKIA KANWAL

 

Lahore College for Women University, Lahore, Pakistan

 

Received: 8 May 2023/Accepted: 18 October 2023

 

Abstract

Insecticidal proteins derived from Bacillus thuringiensis (Bt) are widely utilized in a variety of insect control applications,including sprays and transgenic crops.The development of resistance in pests, on the other hand, can lessen the effectiveness of Bttoxins. In this study, we made efforts to enhance the toxicity of two cry proteins Cry1Ac and Cry2Aa through random mutagenesis against cotton bollworm (Earias vitella), one of the most destructive cotton pests in Pakistan. Random mutagenesis is an important tool for elucidating protein structure-function relationships and for modifying proteins to enhance or change their characteristics. We focused on whole cry proteins for random mutagenesis througherror-prone PCR and constructed a recombinant library of cry proteins. Sequence analysis of eight mutants showed the mutations of 34 different nucleotides in Cry1Ac and Cry2Aa genes. All mutants were spared for toxicity bioassays against 2nd instar larvae of spotted bollworm. Cry1Ac mutant RM1AcM4 (D242E) and Cry2Aa mutants RM2AaM2 (T354A, T492R, F511L, G585E, D606Y) showed enhanced toxicity as compared to proteins without mutation. These two mutants comprise the mutations in domain-II of cry proteins important in specificity determining regions on midgut receptors in insect pests.

 

Keywords: Bacillus thuringiensis; error-prone PCR; random mutagenesis; Earias vitella

 

Abstrak

Protein racun serangga yang diperoleh daripada Bacillus thuringiensis (Bt) digunakan secara meluas dalam pelbagai aplikasi kawalan serangga, termasuk semburan dan tanaman transgenik. Perkembangan rintangan pada perosak sebaliknya boleh mengurangkan keberkesanan toksin Bt. Dalam kajian ini, kami berusaha untuk meningkatkan ketoksikan dua protein cry Cry1Ac dan Cry2Aa melalui mutagenesis rawak terhadap ulat bulu kapas (Earias vitella), salah satu daripada perosak kapas yang paling teruk di Pakistan. Mutagenesis rawak ialah alat penting untuk menjelaskan hubungan struktur-fungsi protein dan untuk mengubah suai protein untuk meningkatkan atau mengubah cirinya. Kami memberi tumpuan kepada keseluruhan protein cry untuk mutagenesis rawak melalui PCR yang terdedah kepada ralat dan membina perpustakaan rekombinan protein cry. Analisis jujukan lapan mutan menunjukkan mutasi 34 nukleotida berbeza dalam gen Cry1Ac dan Cry2Aa. Semua mutan telah dikecualikan untuk bioasai ketoksikan terhadap larva instar kedua ulat bulu. Mutan Cry1Ac RM1AcM4 (D242E) dan mutan Cry2Aa RM2AaM2 (T354A, T492R, F511L, G585E, D606Y) menunjukkan ketoksikan yang dipertingkatkan berbanding dengan protein tanpa mutasi. Kedua-dua mutan ini terdiri daripada mutasi dalam domain-II protein cry yang penting dalam kekhususan menentukan kawasan pada reseptor usus tengah pada perosak serangga.

 

Kata kunci: Bacillus thuringiensis; Earias vitella; mutagenesis rawak; PCR terdedah ralat

 

REFERENCES

Adams, T.T., Eiteman, M.A. & Hanel, B.M. 2002. Solid state fermentation of broiler litter for production of biocontrol agents. Bioresource Technology 82(1): 33-41.

Bleisch, R., Freitag, L., Ihadjadene, Y., Sprenger, U., Steingröwer, J., Walther, T. & Krujatz, F. 2022. Strain development in microalgal biotechnology - random mutagenesis techniques. Life 12(7): 961.

de Oliveira, J.A., Negri, B.F., Hernández-Martínez, P., Basso, M.F. & Escriche, B. 2023. Mpp23Aa/Xpp37Aa insecticidal proteins from Bacillus thuringiensis (Bacillales: Bacillaceae) are highly toxic to Anthonomus grandis (Coleoptera: Curculionidae) Larvae. Toxins 15(1): 55.

Gould, F., Martinez-Ramirez, A., Anderson, A., Ferre, J., Silva, F.J. & Moar, W.J. 1992. Broad-spectrum resistance to Bacillus thuringiensis toxins in Heliothis virescensProceedings of the National Academy of Sciences 89(17): 7986-7990.

Jan, M.T., Abbas, N., Shad, S.A. & Saleem, M.A. 2015. Resistance to organophosphate, pyrethroid and biorational insecticides in populations of spotted bollworm, Earias vittella (Fabricius)(Lepidoptera: Noctuidae), in Pakistan. Crop Protection 78: 247-252.

Jenkins, J.L., Lee, M.K., Valaitis, A.P., Curtiss, A. & Dean, D.H. 2000. Bivalent sequential binding model of a Bacillus thuringiensis toxin to gypsy moth aminopeptidase N receptor. Journal of Biological Chemistry 275(19): 14423-14431.

Jurat-Fuentes, J.L., Heckel, D.G. & Ferré, J. 2021. Mechanisms of resistance to insecticidal proteins from Bacillus thuringiensisAnnual Review of Entomology 66: 121-140.

Kang, J.N., Roh, J.Y., Shin, S.C., Koh, S.H., Chung, Y.J., Kim, Y.S., Wang, Y., Choi, H., Li, M.S., Choi, J.Y. & Je, Y.H. 2007. Dual insecticidal activity of spodoptera-toxic Bacillus thuringiensis strain transformed with Lepidopteran-specific cry toxin. Journal of Asia-Pacific Entomology 10(2): 137-143.

Koppenhöfer, A.M., Wilson, M., Brown, I., Kaya, H.K. & Gaugler, R. 2000. Biological control agents for white grubs (Coleoptera: Scarabaeidae) in anticipation of the establishment of the Japanese beetle in California. Journal of Economic Entomology 93(1): 71-80.

Lenug, D.W. 1989. A method for random mutagenesis of a defined DNA segment using a modified polymerase chain reaction. Technique JMCMB 1: 11-15.

Liao, C., Heckel, D.G. & Akhurst, R. 2002. Toxicity of Bacillus thuringiensis insecticidal proteins for Helicoverpa armigera and Helicoverpa punctigera (Lepidoptera: Noctuidae), major pests of cotton. Journal of Invertebrate Pathology 80(1): 55-63.

Lutz, S. & Patrick, W.M. 2004. Novel methods for directed evolution of enzymes: Quality, not quantity. Current Opinion in Biotechnology 15(4): 291-297.

Mannion, C.M., McLane, W., Klein, M.G., Moyseenko, J., Oliver, J.B. & Cowan, D. 2001. Management of early-instar Japanese beetle (Coleoptera: Scarabaeidae) in field-grown nursery crops. Journal of Economic Entomology 94(5): 1151-1161.

Manoj Kumar, A.S. & Aronson, A.I. 1999. Analysis of mutations in the pore-forming region essential for insecticidal activity of a Bacillus thuringiensis δ-endotoxin. Journal of Bacteriology 181(19): 6103-6107.

McNeil, B.C. & Dean, D.H. 2011. Bacillus thuringiensis Cry2Ab is active on Anopheles mosquitoes: Single D block exchanges reveal critical residues involved in activity. FEMS Microbiology Letters 325(1): 16-21.

Morse, R.J., Yamamoto, T. & Stroud, R.M. 2001. Structure of Cry2Aa suggests an unexpected receptor binding epitope. Structure 9(5): 409-417.

Naqvi, R.Z., Asif, M., Saeed, M., Asad, S., Khatoon, A., Amin, I., Mukhtar, Z., Bashir, A. & Mansoor, S. 2017. Development of a triple gene Cry1Ac-Cry2Ab-EPSPS construct and its expression in Nicotiana benthamiana for insect resistance and herbicide tolerance in plants. Frontiers in Plant Science 8: 55.

Rasila, T.S., Pajunen, M.I. & Savilahti, H. 2009. Critical evaluation of random mutagenesis by error-prone polymerase chain reaction protocols, Escherichia coli mutator strain, and hydroxylamine treatment. Analytical Biochemistry 388(1): 71-80.

Reisig, D.D., Huseth, A.S., Bacheler, J.S., Aghaee, M.A., Braswell, L., Burrack, H.J., Flanders, K., Greene, J.K., Herbert, D.A., Jacobson, A. & Paula-Moraes, S.V. 2018. Long-term empirical and observational evidence of practical Helicoverpa zea resistance to cotton with pyramided Bt toxins. Journal of Economic Entomology 111(4): 1824-1833.

Romero, P.A. & Arnold, F.H. 2009. Exploring protein fitness landscapes by directed evolution. Nature Reviews Molecular Cell Biology 10(12): 866-876.

Saraswathy, N. & Kumar, P.A. 2004. Protein engineering of delta-endotoxins of Bacillus thuringiensisElectronic Journal of Biotechnology 7(2): 178-188.

Sena da Silva, I.H., Gómez, I., Pacheco, S., Sánchez, J., Zhang, J., Luque Castellane, T.C., Aparecida Desiderio, J., Soberón, M., Bravo, A. & Polanczyk, R.A. 2021. Bacillus thuringiensis Cry1Ab domain III β-16 is involved in binding to prohibitin, which correlates with toxicity against Helicoverpa armigera (Lepidoptera: Noctuidae). Applied and Environmental Microbiology 87(2): e01930-20.

Shan, S., Zhang, Y., Ding, X., Hu, S., Sun, Y., Yu, Z., Liu, S., Zhu, Z. & Xia, L. 2011. A Cry1Ac toxin variant generated by directed evolution has enhanced toxicity against Lepidopteran insects. Current Microbiology 62: 358-365.

Shikano, I. & Cory, J.S. 2014. Genetic resistance to Bacillus thuringiensis alters feeding behaviour in the cabbage looper, Trichoplusia niPLoS ONE 9(1): e85709.

Talaei-Hassanloui, R., Bakhshaei, R., Hosseininaveh, V. & Khorramnezhad, A. 2014. Effect of midgut proteolytic activity on susceptibility of lepidopteran larvae to Bacillus thuringiensis subsp. kurstakiFrontiers in Physiology 4: 406.

Torres-Quintero, M.C., Gómez, I., Pacheco, S., Sánchez, J., Flores, H., Osuna, J., Mendoza, G., Soberón, M. & Bravo, A. 2018. Engineering Bacillus thuringiensis Cyt1Aa toxin specificity from dipteran to lepidopteran toxicity. Scientific Reports 8(1): 4989.

Van Dillewijn, P., Vílchez, S., Paz, J.A. & Ramos, J.L. 2004. Plant‐dependent active biological containment system for recombinant rhizobacteria. Environmental Microbiology 6(1): 88-92.

Van Frankenhuyzen, K. 2009. Insecticidal activity of Bacillus thuringiensis crystal proteins. Journal of Invertebrate Pathology 101(1): 1-16.

Vanhercke, T., Ampe, C., Tirry, L. & Denolf, P. 2005. Reducing mutational bias in random protein libraries. Analytical Biochemistry 339(1): 9-14.

Vílchez, S., Jacoby, J. & Ellar, D.J. 2004. Display of biologically functional insecticidal toxin on the surface of λ phage. Applied and Environmental Microbiology 70(11): 6587-6594.

Wang, F., Liu, Y., Zhang, F., Chai, L., Ruan, L., Peng, D. & Sun, M. 2012. Improvement of crystal solubility and increasing toxicity against Caenorhabditis elegans by asparagine substitution in block 3 of Bacillus thuringiensis crystal protein Cry5Ba. Applied and Environmental Microbiology 78(20): 7197-7204.

Wei, J., Zhang, Y. & An, S. 2019. The progress in insect cross‐resistance among Bacillus thuringiensis toxins. Archives of Insect Biochemistry and Physiology 102(3): e21547.

Yunus, F.N., Makhdoom, R. & Raza, G. 2011. Synergism between Bacillus thuringiensis toxins Cry1Ac and Cry2Aa against Earias vitella (Lepidoptera). Pakistan Journal of  Zoology 43: 575-580.

Zhang, N., Liu, R., Shu, C., Zhang, J., Li, H. & Gao, J. 2013. Construction and analysis of Vip3A insecticidal protein random recombination library. Biotechnology Bulletin 3: 160.

Zheng, A., Zhu, J., Tan, F., Guan, P., Yu, X., Wang, S., Deng, Q., Li, S., Liu, H. & Li, P. 2010. Characterisation and expression of a novel haplotype cry2A-type gene from Bacillus thuringiensis strain JF19-2. Annals of Microbiology 60: 129-134.

 

*Corresponding author; email: fakhar.yunus@lcwu.edu.pk

 

 

 

 

 

 

 

 

 

 

 

previous